Last Updated: February 28, 2007
GCRIO Program Overview
Library Our extensive collection of documents.

Privacy Policy |
Archives of the
Global Climate Change Digest A Guide to Information on Greenhouse Gases and Ozone Depletion Published July 1988 through June 1999
FROM VOLUME 2, NUMBER 1, JANUARY 1989
PROFESSIONAL PUBLICATIONS...
TREND ANALYSIS
Item #d89jan29
"Ozone Reduction in the 1980's: A Model Simulation of Anthropogenic
and Solar Perturbations," G. Brasseur (NCAR, POB 3000 Boulder CO 80307),
M.H. Hitchman et al., Geophys. Res. Lett., 15(12), 1361-1364,
Nov. 1988.
Shows that a depletion in total ozone of the order of 2% and a reduction in
ozone density near 40 km of 7-12% from 1979 to 1986 are consistent with the
observed increase in trace gas densities and the simultaneous decrease in solar
activity. The ozone response to trace gas emissions increases substantially with
latitude, while the solar signal in ozone is present lower in the atmosphere and
is nearly independent of latitude.
Item #d89jan30
"Dynamic Variability of Column Ozone," K.K. Tung (Dept. Appl.
Math., Univ. Wash., Seattle WA 98195), H. Yang, ibid., 93(D9),
11,123-11,128, Sep. 20, 1988.
Presents an analytic estimate of the dynamical change in column ozone
density as a function of temperature change in the lower stratosphere. If it can
be assumed that the temperature change is induced by changes in wave transports,
for each 1% (about 2 ° C) cooling averaged over the lower stratosphere, the
column ozone density can decrease 7%. Also attempts to derive the amount of
observed temperature change that would be produced by the radiative effects of
observed ozone change.
Item #d89jan31
"Intercomparison of Total Ozone Measured by the Brewer and Dobson
Spectrophotometers at Toronto," J.B. Kerr (Atmos. Environ. Svc., 4905
Dufferin St., Downsview, Ontario M3H 5T4, Can.), I.A. Asbridge, W.F.J. Evans,
ibid., 11,129-11,140.
Presents the results and discusses the causes for minor differences.
Develops a suitable transfer function to calculate simulated Dobson ozone data
from Brewer data. With appropriate corrections applied, the Dobson ozone values
are 3.8% greater than those of Brewer and the standard deviation between the
daily mean values is 0.5%. The relative drift between the two instruments over
the 5-year period was 0.05% per year.
Item #d89jan32
"Comparison of Ground-Based and Total Ozone Mapping Spectrometer
Measurements Used in Assessing the Performance of the Global Ozone Observing
System," R.D. Bojkov (address immed. above), C.L. Mateer, A.L. Hansson,
ibid., 93(D8), 9525-9533, Aug. 20, 1988.
Identifies a drift of about 0.4% per year between the two systems. After the
individual monthly biases are removed and using the satellite as a transfer
standard, the difference between 92 currently operating stations of the Global
Ozone Observing System (GO3OS) are analyzed. Close to 20% of the Dobson stations
and nearly 30% of the filter stations show differences greater than 3%. Several
examples of individual station discrepancies are discussed to encourage the
complete reevaluation of the ground-based ozone record.
Item #d89jan33
"A Comparison of Ozone Trends From SME and SBUV Satellite
Observations and Model Calculations," D.W. Rusch (Lab. Atmos. Space Phys.,
Boulder CO 80309), R.T. Clancy, ibid., 15(8), 776-779, Aug.
1988.
The SBUV and UVS data exhibit remarkably similar seasonal and latitudinal
variations in ozone trends from 1982 to 1986. The detailed variations of ozone
trends from both data sets are reproduced by photochemical model calculations
which include latitude-dependent NMC temperature trends.
Item #d89jan34
Comment on "Southern Hemisphere Temperature Trends: A Possible
Greenhouse Effect?" K.P. Shine (Dept. Atmos. Phys., Univ. Oxford, Oxford
OX1 3PU, UK), ibid., 843-844. Suggests, if there is indeed a trend in
the southern hemisphere temperatures consistent with increased concentrations of
greenhouse gases, there also exists a possible coupling between increased
greenhouse gases and the springtime Antarctic ozone depletion.
Item #d89jan35
"Multi-year Fluctuations of Temperature and Precipitation: The Gray
Area of Climate Change," T.R. Karl (NOAA-NESDIS, Fed. Bldg., Asheville NC
28801), Climatic Change, 12(2), 179-197, Apr. 1988.
The twentieth century climate record of the United States reveals a
substantial number of decadal fluctuations which occur in all seasons for both
temperature and precipitation. Statistical evidence suggests that a substantial
portion of these fluctuations are merely manifestations of a stochastic process
which possesses weak year-to-year persistence as viewed a posteriori.
The results emphasize the desirability of clearly stated a priori
theories of climate change in formulating physical theories, as well as the
limited usefulness of widely used climate normals.
Item #d89jan36
"Greenhouse Warming or Little Ice Age Demise: A Critical Problem for
Climatology," S.B. Idso (U.S. Water Conservation Lab., Phoenix, Ariz.),
Theor. Appl. Climatol., 39(1), 54-56, 1988.
A comparative analysis of long-term (several hundred year) temperature and
CO2 trends suggests that the global warming of the past century is not due to
the widely accepted CO2 greenhouse effect but rather to the natural recovery of
the earth from the global chill of the Little Ice Age. Gaining a better
understanding of the Little Ice Age looms as a critical problem in the
climatology of the past with important implications for the climatology of the
future.
Item #d89jan37
"New Results on the Strato-Mesospheric Cooling of the Northern
Hemisphere (1969-78)," C. Varotsos (Hellenic Naval Acad., Piraeus, Greece),
Earth, Moon, Planets, 41(2), 191-196, May 1988.
Rocketsonde-derived temperature trends within the Northern Hemisphere are
examined. Stratospheric and lower mesospheric temperature fluctuations in some
cases are about one order of magnitude larger than previously observed. The main
features of the temperature trends throughout the decade 1969-78 are notably: 15
° C cooling at 60 km; 5.5 ° C at 50 km; 5 ° C at 40 km; 4 ° C at
30 km; and 3.5 ° C at 20 km.
Item #d89jan38
"An Analysis of the 7-Year Record of SBUV Satellite Ozone Data:
Global Profile Features and Trends in Total Ozone," G.C. Reinsel (Dept.
Statis., Univ. Wisc., Madison WI 53706), G.C. Tiao et al., J. Geophys. Res.,
93(D2), 1689-1703, Feb. 20, 1988.
Results show an average negative linear drift in SBUV and Dobson data of
about -0.4% per year. Comparisons are also performed which indicate that trends
obtained from SBUV data at the Dobson station network of locations over this
period are quite similar to trend estimates obtained from the global SBUV
series. Comparison of above SBUV data global trend estimate with a linear trend
estimate shows it was considerably more negative with a much larger standard
error. No firm conclusions can be drawn in terms of trends over such a short
period.
Item #d89jan39
"Changes in SBUV Ozone Profiles Near Natal, Brazil, From 1979 to
1985," R.A. Barnes (Chemal Inc., POB 44, Wallops Island VA 23337), ibid.,
1704-1717.
SBUV ozone amounts are significantly lower in 1985 than in 1979, with a
distinct skew between the ozone profiles from the two data sets. There are
corresponding changes in the backscattered radiances from SBUV for these data
sets with a distinct wavelength dependence for the changes. There is also a
direct relationship between radiance differences and differences in the ozone
column amounts. Using SBUV values alone, it is not possible to separate
atmospheric and instrumental changes.
Item #d89jan40
"Monitoring of the Integrated Column of Hydrogen Fluoride above the
Jungfraujoch Station Since 1977 - the HF/HCl Column Ratio," R. Zander
(Inst. Astrophys., Univ. Liège, B-4200 Liège-Ougrée,
Belgium), G. Roland et al., J. Atmos. Chem., 5(4), 385-394, Dec.
1987.
Results deduced spectroscopically indicate a cumulative trend equivalent to
8.5 + or - 1% increase per year, as well as short-term variability which appears
to be strongly correlated with meridional circulation patterns during the
February-April months. Also, found that the integrated content of HF undergoes a
seasonal change with an autumn minimum. The HF/HCl ratio derived from
simultaneous HF and HCl measurements was 0.15 during 1977-79 and 0.24 for
1983-85.
Item #d89jan41
"Column Abundance and the Long-Term Trend of Hydrogen Chloride (HCl)
above the Jungfraujoch Station," R. Zander (address immed. above), G.
Roland et al., ibid., 395-404.
Based on an intensified set of measurements carried out over the last three
years, a seasonal component in the total content of HCl has been established for
the first time, showing a minimum occurring in early winter and a maximum during
the spring.
Item #d89jan42
"Rocketsonde Evidence for a Stratospheric Temperature Decrease in
the Western Hemisphere during 1973-85," J.K. Angell (NOAA-ERL, Silver
Spring MD 20910), Monthly Weath. Rev., Nov. 1987.
Most models indicate that the stratospheric cooling induced by an increase
in CO2 and certain trace gases should increase with height almost up to the
stratopause at 50 km. Rocketsondes become natural candidates in the attempt to
detect a CO2 effect through the observation of a decrease in high stratospheric
temperature. This paper presents and discusses data from rocketsonde stations
presently in operation.
Guide to Publishers
Index of Abbreviations
|