Last Updated: February 28, 2007
GCRIO Program Overview
Library Our extensive collection of documents.

Privacy Policy |
Archives of the
Global Climate Change Digest A Guide to Information on Greenhouse Gases and Ozone Depletion Published July 1988 through June 1999
FROM VOLUME 4, NUMBER 7, JULY 1991
PROFESSIONAL PUBLICATIONS...
ATMOSPHERIC CHEMISTRY
Item #d91jul66
"Methane Emissions from Rice Fields in China," M.A.K. Khalil
(Inst. Atmos. Sci., Oregon Grad. Ctr., 19600 NW von Neumann Dr., Beaverton OR
97006), R.A. Rasmussen et al., Environ. Sci. Technol., 25(5),
979-981, May 1991. Emission rates were 4-10 times higher than from rice fields
in the U.S. and Europe, showing that rice fields are a major source of
atmospheric CH4.
Item #d91jul67
"Sources and Sinks of Methane in the African Savanna--CH4 Emissions
from Biomass Burning," R.A. Delmas (Lab. d'Aérol., Univ. P.
Sabatier, 31062 Toulouse Cedex, France), A. Marenco et al., J. Geophys Res.,
96(D4), 7287-7299, Apr. 20, 1991. Fluxes were measured using static
chambers and CH4:CO2 ratios studied in vertical profiles from the TROPOZ I
campaign. Biomass burning in tropical Africa constitutes an important source of
atmospheric CH4 of about 9.2 x 106 t(CH4) y-1.
Item #d91jul68
"A Record of the Atmospheric Methane Sink from Formaldehyde in Polar
Ice Cores," T. Staffelbach (Phys. Inst., Univ. Bern, CH-3012 Bern,
Sidlerstr. 5, Switz.), A. Neftel et al., Nature, 349(6310),
803-805, Feb. 14, 1991. Because oxidation of CH4 followed by other reactions is
the main source of formaldehyde in the remote troposphere, changes in sources of
CH4 and in the oxidation capacity of the atmosphere can be deduced from records
of both substances in ice cores.
Item #d91jul69
Comment on a mechanism of N2O production in the ocean, S.W.A. Naqvi (Nat.
Inst. Oceanog., Dona Paula, Goa 403 004, India), ibid., 349(6308),
373-374, Jan. 31, 1991.
Item #d91jul70
J. Geophys. Res., 96(D1), Jan. 20, 1991.
"Reactions of OH with alpha-Pinene and beta-Pinene in Air: Estimate of
Global CO Production from the Atmospheric Oxidation of Terpenes," S.
Hatakeyama (Global Environ. Res. Group, Nat. Inst. Environ. Studies, Tsukuba,
Ibaraki 305, Japan), K. Izumi et al., 947-958. Total annual emission of CO from
this process, which is related to increasing CH4 levels, is estimated to be 96
Tg C y-1.
"Tropospheric Nitrogen: A Three-Dimensional Study of Sources,
Distributions and Deposition," J.E. Penner (Lawrence Livermore Nat. Lab.,
POB 808, Livermore CA 94550), C.S. Atherton et al., 959-990. In general, model
predictions and measurements agree for NO, NO2 and HNO3, except that simulated
concentrations of HNO3 in the remote Pacific are too low. Anthropogenic sources
have substantially increased the concentrations of NOx and HNO3 throughout all
continents; fossil fuel sources are responsible for most of this increase in the
Northern Hemisphere, while both biomass burning and fossil-fuel combustion
contribute in the Southern Hemisphere.
Item #d91jul71
J. Geophys. Res., 95(D13), Dec. 20, 1990.
"Carbon Kinetic Isotope Effect in the Oxidation of Methane by the
Hydroxyl Radical," C.A. Cantrell (NCAR, POB 3000, Boulder CO 80307), R.E.
Shetter et al., 22,455-22,462. An improved measurement of the ratio of rate
coefficients for reaction with 12CH4 relative to 13CH4 provides important
constraints on the current understanding of the cycling of CH4 through the
atmosphere through the use of carbon isotope measurements.
"Soil Fluxes and Atmospheric Concentration of CO and CH4 in the
Northern Part of the Guayana Shield, Venezuela," D. Scharffe (Max Planck
Inst., Postfach 3060, D 6500 Mainz, Ger.), W.M. Hao et al., 22,475-22,480.
Extrapolation of flux measurements made in scrub grass savanna and deciduous
forest yields a global emission of 61 Tg CH4, about 10% of its global source.
Even though anthropogenic sources cannot be ruled out completely, termites and
vegetation emission are most likely the dispersed sources of CO in this region.
"N2O and NO Emissions from Soils in the Northern Part of the Guayana
Shield, Venezuela," W. Sanhueza (Inst. Venezolano de Investigaciónes
Científicas, Apartado 21827, Caracas, Venezuela 1020-A), W.M. Hao et al.,
22,481-22,488. Flux measurements show that the forest soil produces
significantly larger emissions of N2O than the savanna soil, suggesting that
long-term deforestation could produce a reduction of the N2O emissions to the
atmosphere. Effects of fertilization are discussed.
Item #d91jul72
"Methane Emissions from Fen, Bog and Swamp Peatlands in Quebec,"
T.R. Moore (Dept. Geog., McGill Univ., 805 Sherbrooke St. W., Montreal, Que. H3A
2K6, Can.), R. Knowles, Biogeochem., 11(1), 45-61, Sep. 1990. A
static chamber technique was used weekly from spring thaw to winter freezing to
measure CH4 emissions from 10 sites representing subarctic fens and temperate
swamps and bogs. Laboratory measurements were made of rates of CH4 production
under anaerobic conditions and CH4 consumption under aerobic conditions. Annual
CH4 emission rates are estimated.
Item #d91jul73
"Atmospheric Constituent Inversion Problems: Implications for
Baseline Monitoring," I.G. Enting (Div. Atmos. Res., CSIRO, Pvt. Bag 1,
Mordialloc, Vic. 3195, Australia), G.N. Newsam, J. Atmos. Chem., 11,
69-87, 1990. Since most models for determining sources and sinks of atmospheric
constituents lead to ill-posed inverse problems, mathematical analysis of these
problems needs to be undertaken to determine the extent to which a given set of
data contains usable information about source/sink processes.
Item #d91jul74
Tellus, 42B(3), July 1990.
"Constraints on the Global Sources of Methane and an Analysis of Recent
Budgets," M.A.K. Khalil (Inst. Atmos. Sci., Oregon Grad. Ctr., 19600 NW von
Neumann Dr., Beaverton OR 97006), R.A. Rasmussen, 229-236. Calculates, from
historical levels of CH4 and its present atmospheric lifetime, that the
anthropogenic fraction of CH4 production should be 40-70%, with present
emissions of 420-620 Tg y-1. Only two of 11 CH4 budgets published over the last
decade meet these conditions.
"A Methane Flux Transect along the Trans-Alaska Pipeline Haul Road,"
S.C. Whalen (Inst. Marine Sci., Univ. Alaska, Fairbanks AK 99775), W.S.
Reeburgh, 237-249. Extension of measured fluxes to other areas and periods
yields independent estimates of annual CH4 emission from global tundra and taiga
of 38 Tg and 15 Tg, about 46% of the wetland emission term, or 10% of the global
atmospheric input.
Guide to Publishers
Index of Abbreviations
|