Last Updated: February 28, 2007
GCRIO Program Overview
Library Our extensive collection of documents.

Privacy Policy |
Archives of the
Global Climate Change Digest A Guide to Information on Greenhouse Gases and Ozone Depletion Published July 1988 through June 1999
FROM VOLUME 10, NUMBER 1, JANUARY 1997PROFESSIONAL PUBLICATIONS...
TEMPERATURE TRENDS
Item #d97jan24
"The Little Ice Age and Medieval Warm Period in the Sargasso Sea,"
L.D. Keigwin (Woods Hole Oceanog. Inst., Woods Hole MA 02543), Science,
274(5292), 1504-1508, Nov. 29, 1996.
Climate data from marine sediments generally exhibit millenial-scale
fluctuations, but lack sufficient time resolution to be compared directly to
instrumental records. The gap in resolution occurs at the century time scale,
the very scale on which anthropogenic warming is thought to be occurring. This
paper reports a study of sediments from the Bermuda Rise in the northern
Sargasso Sea, a location where century-scale resolution is possible.
Results show that about 400 years ago (the Little Ice Age) and 1700 years ago
sea surface temperature was about 1° C cooler than today, while about 1000
years ago (the Medieval Warm Period) it was about 1° C warmer than today.
Thus, at least some of the warming since the Little Ice Age appears to be part
of a natural oscillation.
Item #d97jan25
"Regional Trends of Surface and Tropospheric Temperature and
Evening-Morning Temperature Difference in Northern Latitudes: 1973-93,"
R.J. Ross (ARL/NOAA, 1315 East-West Hwy., Silver Spring MD 20910; e-mail:
rross@arlrisc.ssmc.noaa.gov) J. Otterman et al., Geophys. Res. Lett.,
23(22), 3179-3182, Nov. 1, 1996.
Examines the consistency of surface temperature trends and corresponding
upper-air temperature trends in eight north-latitude regions. In most seasons,
surface temperature trends were positive in Eurasia and western North America
but were negative in central North America and eastern Canada. Regions with
sizable and statistically significant surface trends usually had significant
tropospheric trends up to 500 mb and sometimes 300 mb. The significant
tropospheric trends showed a tendency to decrease in magnitude with height.
Item #d97jan26
"Geographic Analysis of Differences in Trends Between Near Surface
and Satellite-Based Temperature Measurements," R.C. Balling Jr. (Off.
Climatol., Arizona State Univ., Tempe AZ 85287; e-mail: robert.balling@asu.edu),
ibid., 23(21), 2939-2941, Oct. 15, 1996.
Over the past 16 years of overlapping records (1979-1994), satellite-based
measurements of tropospheric temperature show a linear cooling of 0.10° C,
while the near-surface air temperature record developed by Jones (1994) shows a
warming of 0.18° C, a significant discrepancy that is the source of much
debate. This study shows that most of the difference comes from tropical ocean
areas, with a much smaller contribution from the mid-latitude land areas of the
Northern Hemisphere. Discusses the implications of these results to the many
explanations that have been offered for the differential trend.
Item #d97jan27
"Detecting Greenhouse-Gas-Induced Climate Change with an Optimal
Fingerprint Method," G.C. Hegerl, (Max Planck Inst. Meteor., Bundestr. 55,
D-21046 Hamburg, Ger.), J. Clim., 9(10), 2281-2306, Oct. 1996.
This study attempts to detect anthropogenic climate change in the
observational record of near-surface temperatures by trying to identify as a "fingerprint"
the spatial and temporal changes in temperature that are expected to
characterize anthropogenic change, should it be present. A coupled
ocean-atmosphere general circulation model is used, both to estimate the
fingerprint and to estimate natural climatic variability. The estimate of
natural variability is then used to statistically modify (optimize) the
fingerprint to reduce the confounding influence of random fluctuations.
The null hypothesis, that the latest observed 20-year and 30-year trend of
near-surface temperature (ending in 1994) is part of natural climate
variability, is rejected with a risk of less than 2.5%-5%. However, to attribute
the observed warming uniquely to anthropogenic greenhouse gas forcing, more
information is needed on the climate's response to other forcing mechanisms
(e.g., changes in solar radiation, or volcanic or anthropogenic sulfate
aerosols) and their interactions. Furthermore, the estimate of internal
(natural) climate variability is still uncertain. With these caveats, the
conclusion remains that a statistically significant, externally induced warming
has been observed.
Item #d97jan28
"Observed Changes in the Diurnal Temperature and Dewpoint Cycles
Across the United States," P.C. Knappenberger (Dept. Environ. Sci., Univ.
Virginia, Charlottesville VA 22903; e-mail: pck4s@virginia.edu), P.J. Michaels,
P.D. Schwartzman, Geophys. Res. Lett., 23(19), 2637-2640, Sep.
15, 1996.
Several recent studies have examined differences in maximum and minimum
surface temperatures at various stations for signs of climate change. However,
more frequent hourly data must be used to detect any change in the pattern of
heating throughout the day. This study examines the diurnal temperature cycles
of 15 stations across the U.S. since the late 1940s and finds an ubiquitous
shift in the daytime cycle of warming towards later in the day. Stations were
divided into eastern and western subsets as a first approximation for high and
low sulfate aerosol conditions. Results were consistent with a sulfate effect on
overall temperature, but inconsistent with modeled estimates of the effect of
sulfates on the intradiurnal course of temperature.
Item #d97jan29
"Effects of Climate Change on Mountain Ecosystems Upward
Shifting of Alpine Plants," H. Pauli (Dept. Vegetation Ecol., Univ. Vienna,
Althanstr. 14, 1091 Vienna, Austria), M. Gottfried, G. Grabherr, World
Resource Review, 8(3), 382-390, Sep. 1996.
Presents empirical evidence of the upward movement of vascular plants in the
European Alps. Comparison of data collected in 1992-1993 from 30 high summits
with historical data shows an increase in species at 70% of the summits.
Approximate rates of upward movement for common alpine plants were calculated to
be between zero and four meters per decade. This result may already be a "measurable"
result of global warming since the 19th century.
Item #d97jan30
"Recent Changes in Tropical Freezing Heights and the Role of Sea
Surface Temperature," H.F. Diaz (ERL/CDC/NOAA, 325 Broadway, Boulder CO
80303), N.E. Graham, Nature, 383(6596), 152-154, Sep. 12, 1996.
A widespread retreat of alpine glaciers and melting of tropical ice-cap
margins has been observed in recent decades, over which time a general climate
warming at lower altitudes has been documented. This study compared
high-altitude air-temperature measurements for the past few decades, to
temperatures predicted by a climate model forced by the observed pattern
of (rising) sea-surface temperatures in a 19-year simulation. Results strongly
indicate that high-altitude warming is related to a decadal increase in tropical
sea temperatures, and consequent enhancement of the tropical hydrological cycle.
Item #d97jan31
"Nineteenth-Century Marine Temperature Date: Comments on Observing
Practices and Potential Biases in Marine Datasets," M. Chenoweth (Elkridge,
U.S.A.), Weather, 51(8), 280-285, Aug. 1996.
Analyzes the difficulties of determining the reliability of early marine air
and sea temperature data collected since the mid-1850s, which rests on accurate
knowledge of details about how the data were collected (metadata, i.e., data or
information about the data). Concludes that considerable work needs to be done
before nineteenth-century marine data can be considered as reliable as modern
data.
Item #d97jan32
"Removal of the El Niņo-Southern Oscillation [ENSO] Signal
from the Gridded Surface Air Temperature Data Set," P.M. Kelly (Clim. Res.
Unit, Univ. E. Anglia, Norwich NR4 7TJ, UK; e-mail: M.Kelly@uea.ac.uk), P.D.
Jones, J. Geophys. Res., 101(D14), 19,013-19,022, Aug. 27, 1996.
Previous attempts to remove the ENSO component of variability from climate
records at the global scale have been based on relatively simple regression
analyses using time lag relationships. This study used the statistical technique
of empirical orthogonal analysis, which can recognize the spatial
patterns of fluctuation characteristic of ENSO. Concludes that this approach
presents an effective means of isolating and removing specific climate signals.
Item #d97jan33
"Mongolian Tree Rings and 20th Century Warming," G.C. Jacoby
(Tree Ring Lab., Lamont-Doherty Earth Observ., Rte. 9W, Palisades NY 10964),
R.D. D'Arrigo, T. Davaajamts, ibid., 771-773.
A 450-year tree-ring width chronology of Siberian pine shows wide annual
growth rings for the recent century. Ecological site observations and
comparisons with instrumental temperature records indicate that the ring widths
of these trees are sensitive to temperature. This chronology shows that the
recent warming indicated is unusual relative to temperatures of the past 450
years.
Item #d97jan34
"Trends of Maximum and Minimum Daily Temperatures in Central and
Southeastern Europe," R. Brazdil (Dept. Geog., Masaryk Univ., Brno, Czech
Rep.), M. Budikova et al., Intl. J. Climatol., 16(7), 765-782,
July 1996.
European data are largely missing in the recent study on trends in daily
maximum and minimum temperatures by Karl et al. (1993); this study is intended
to fill some of the existing gaps in European analysis. The increase in the
annual maximum daily temperature in central Europe over the period 1951-1990 was
slightly lower than that of the minimum daily temperature, resulting in a small
decrease in the daily temperature range of -0.08° C.
Item #d97jan35
"Recent Trends in Maximum and Minimum Temperature Threshold
Exceedences in the Northeastern United States," A.T. DeGaetano (Northeast
Regional Clim. Ctr., 1123 Bradfield Hall, Cornell Univ., Ithaca NY 14853), J.
Clim., 9(7), 1646-1660, July 1996.
Assesses changes from 1959 to 1993 in the annual number of daily maximum and
minimum temperature threshold exceedences for 22 primarily rural sites. Overall,
a significant trend toward fewer cold minimum exceedences (minimum temperature
less than or equal to 10° , 5° , or 0° F) is detected.
Item #d97jan36
"Climate: The Elements," J.A.T. Bye (Flinders Inst. for Atmos. &
Marine Sci., Flinders Univ., GPO Box 2100, Adelaide 5001, Australia), ibid.,
1546-1560.
Presents a simplified analytical climate model with these characteristics:
the atmosphere is a simple oscillator for all periods over one year; the ocean
stores heat; the ocean exchanges momentum with the atmosphere; and random
forcing exists due to atmospheric thermodynamics and oceanic dynamics.
Statistical characteristics gleaned from simulations with this model imply that
random walk lengths (intervals of temperature excursions due to natural
fluctuations) have a time scale of at least a century.
Item #d97jan37
"Climatic Process as a Random Walk," N.A. Bagrov (Hydrometeor.
Sci. Res. Ctr. of the Russian Federation), Russian Meteor. & Hydrol.,
No. 9, 28-36, 1995.
Results of this analysis of the statistical characteristics of the
atmosphere indicate that the observed increase in global temperature over the
past century is unlikely to be merely a random trend; a change in the properties
of the climate system itself, related to the biosphere, is likely to be
involved.
Guide to Publishers
Index of Abbreviations
|